КАРДИОВАСКУЛЯРНЫЕ ИЗМЕНЕНИЯ У НЕДОНОШЕННЫХ ДЕТЕЙ С ПЕРИНАТАЛЬНОЙ ПАТОЛОГИЕЙ

Е. Ярукова,

Л. Панова, доктор медицинских наук, профессор Башкирский государственный медицинский университет, Уфа **E-mail:** panov_home@ufacom.ru

В результате изучения морфофункционального состояния сердечнососудистой системы в неонатальном периоде у новорожденных, родившихся преждевременно, установлена четкая взаимосвязь характера кардиоваскулярных изменений с тяжестью перинатальной патологии и гестационным возрастом.

Ключевые слова: кардиология, сердечно-сосудистая система, морфофункциональное состояние, недоношенные дети, дезадаптация

ктуальность проблемы изучения морфофункциональ-Ного состояния сердечно-сосудистой системы (ССС) у маловесных детей в период неонатальной адаптации определяется увеличением числа выживших недоношенных детей, в том числе с очень низкой и экстремально низкой массой тела (ЭНМТ). Последнее стало возможным благодаря разработке и внедрению в практику неонатологии новых технологий интенсивной терапии и гуманизации методов выхаживания [1, 2]. Тяжесть состояния таких детей обусловлена не только перинатальной гипоксией, незрелостью дыхательной и нервной систем, но и ишемией миокарда, нарушениями адаптации ССС, переходного кровообращения, нейровегетативной регуляции ритма сердца [3-6]. ССС новорожденного, особенно недоношенного ребенка, являясь индикатором любых патологических процессов, наиболее уязвима и отражает адаптивные возможности организма и гомеостаза в целом [7-11].

Синдромы персистирующего фетального кровообращения или транзиторной легочной гипертензии могут усугублять тяжесть течения респираторного дистресс-синдрома (РДС), особенно у младенцев с ЭНМТ, и являться факторами риска формирования бронхолегочной дисплазии [12—16]. Последствия нарушений адаптации ССС у недоношенных разнообразны и становятся причиной многих, нередко тяжелых заболеваний детей и взрослых [1, 17, 18].

В литературе исследования функционального состояния ССС у недоношенных детей, родившихся в стабильном состоянии или требующих интенсивной помощи, немногочисленны [2, 5, 11, 14, 19]. В основном публикации включают исследования, проведенные до внедрения новых протоколов ведения недоношенных новорожденных с различной перинатальной патологией и реализации большого клинического опыта выхаживания маловесных младенцев.

Целью настоящей работы было изучение морфофункционального состояния ССС у недоношенных детей с различной перинатальной патологией в период острой перестройки с фетального на неонатальный тип кровообращения (1–3-и сутки) и последующей ранней постнатальной адаптации (10–14-е сутки жизни).

Проведено ретроспективное и проспективное исследование недоношенных новорожденных, находившихся на лечении в неонатальном центре Республиканской детской клинической больницы Уфы (отделение реанимации и интенсивной терапии, отделение для недоношенных и патологии новорожденных) в 2010-2015 гг. В основной группе (n=41) наблюдались недоношенные дети с различной перинатальной патологией, которым потребовалась интенсивная терапия с инвазивной искусственной вентиляцией легких ИВЛ. Группа сравнения была сформирована из недоношенных младенцев без тяжелой перинатальной патологии при традиционных методах выхаживания (n=31). Средний гестационный возраст детей основной группы составил $30,0\pm1,8$ нед, масса тела — $1230,0\pm395,0$ г, группы сравнения — соответственно $33,0\pm1,7$ нед и $1965,0\pm389,4$ г.

Критериями включения в основную группу были: срок гестации — <37 нед, наличие перинатальной патологии, требующей интенсивной терапии, согласие родителей. В исследование не включали детей со сроком гестации >37 нед, врожденными пороками сердца и другими аномалиями развития, а также при несогласии родителей.

Был проведен анализ материнского анамнеза (акушерский анамнез, гинекологические и экстрагенитальные заболевания, течение беременности и родов), особенностей неонатального периода, потребности в интенсивной терапии, лабораторных данных, показателей адаптации ССС в зависимости от наличия различной перинатальной патологии.

Использованы следующие методы исследования:

- лабораторные общепринятые: общий и биохимический анализ крови; определение газов крови и кислотнощелочного состояния (аппарат Radiometer); транскутанное мониторирование сатурации кислорода и АД (аппарат Nellcor Purstan Bennett NPP-290);
- рентгенография органов грудной клетки;
- нейросонография (аппарат Logiq E9 фирмы General Electric, США);
- специальные:
- эхокардиография (ЭхоКГ) с допплерографией сосудов (портативная система Acuson Cypress фирмы Siemens, США; аппарат Envisor С фирмы Philips, Корея) по стандартным методикам в 1- и 2-мерном режимах с оценкой структурных параметров: размер правого желудочка (ПЖ) по длине оси, толщина задней стенки левого желудочка (ТЗСЛЖ), конечный диастолический (КДР) и систолический (КСР) размер ЛЖ, диаметр корня аорты (АО), диаметр легочной артерии (ЛА), артериального протока (АП), размер овального окна (ООО). Систолическую функцию ЛЖ оценивали по фракции выброса (ФВ) и фракции укорочения (ФУ), величине ударного объема (УО); производили расчет давления в правом желудочке (СДПЖ);
- электрокадиография (ЭКГ; применялась система для ЭКГ «Кардиотоника-4000» фирмы «Иннарт», Россия).

У новорожденных имеются определенные особенности техники регистрации, интерпретации и методики анализа ЭКГ. Используются общепринятые обозначения электродов: к правой руке крепится провод с красным наконечником, к левой — с желтым наконечником; к левой ноге — с зеленым,

к правой — с черным наконечником. У новорожденных допускается наложение грудных электродов в одну линию, проходящей по пятому межреберью, так как размеры сердца малы и оно преимущественно лежит в грудной клетке. При возможности прекардиальные электроды располагают на грудной клетке следующим образом: отведение V1-y правого края грудины в четвертом межреберье, V2-y левого края грудины в четвертом межреберье, V3- на середине линии, соединяющей точки V1 и V4, V4- на 1 см ниже расположения V1 и V2 по левой среднеключичной линии, V5- на уровне V4- по левой средней подмышечной линии, V6- на уровне V4- по левой средней подмышечной линии.

Анализ ЭКГ проводили по определенной схеме:

- подсчитывали частоту сердечных сокращений (ЧСС) (по интервалу R-R и формуле: ЧСС=60: R-R);
- определяли источник возбуждения (ритм синусовый или несинусовый);
- находили максимальный и минимальный интервал R—R во II отведении, продолжительность интервала P—Q для оценки функции проводимости;
- определяли положение электрической оси сердца (ЭОС);
- проводили анализ:
- предсердного зубца *P*: его продолжительность во II отведении, амплитуду в отведениях I, II, III, VI;
- желудочкового комплекса QRST: QRS продолжительность комплекса во II отведении, амплитуду зубца Q в III отведении, амплитуду зубца R в I, II, AVFотведениях:
- сегмента S-T: амплитуду зубца S в I, AVF отведениях, смещение сегмента в I, II, III отведениях;
- зубца T его амплитуду в II, AVF отведениях;
- сегмента O-T: его продолжительность.

Исследования проводили в возрасте 2-3 дней жизни и в динамике на 10-14-й день жизни.

Статистическая обработка результатов проведена в операционной среде Windows 7 с использованием лицензионной программы Statistica 6.0. Количественные данные представлены в виде Ме (медиана) с интерквартильным размахом -UQ-LQ (25%-75% процентили). Достоверность различий между группами (р) определяли с помощью методов непараметрической статистики с использованием U-критерия Манна-Уитни и метода χ². Зависимость между известными величинами оценивали методом многофакторного анализа по коэффициенту ранговой корреляции Спирмена (г.). Традиционно достоверность при р<0,05 оценивалась как значимая.

Состояние недоношенных детей при рождении, адаптивные возможности организма, в том числе и ССС, определяются не только степенью мор-

фофункциональной зрелости, но и условиями антенатального развития. Анализируя материнский анамнез, в первую очередь мы обращали внимание на заболевания, способствующие перинатальной гипоксии, поскольку именно она влияет на состояние миокарда, проводящей системы сердца и высшие вегетативные центры [9, 10].

При изучении частоты соматических заболеваний у матерей установлено, что экстрагенитальная патология в анамнезе, которая могла способствовать развитию хронической фетоплацентарной недостаточности (ХФПН) и хронической гипоксии плода (гипертоническая болезнь, ожирение, анемия, хронический пиелонефрит и другие заболевания) имелась у 35% женщин в обеих группах. Частота осложнений беременности и родов, инфекционновоспалительных заболеваний также была высокой в обеих группах без статистически достоверных различий (табл. 1). Установлена взаимосвязь риска преждевременных родов с $X\Phi\Pi H$ (r=+0,831, p<0,001), тяжелой анемией (r=+0,771, р<0.05) и внутриутробным инфицированием при наличии у беременной инфекции мочеполовой системы (r=+0,658, р<0,05). Также выявлено, что более 1/3 беременных основной группы не состояли на учете в женской консультации (разница между группами недостоверна - соответственно 31,7 и 13,3%; p>0,05).

Клиническая характеристика недоношенных детей, включенных в исследование, представлена в табл. 2 и 3. В основной группе преобладали дети с низкой оценкой по шкале Апгар, генерализованной перинатальной инфекцией, требующие интенсивной терапии, что, естественно, осложняло кардиоваскулярную адаптацию. В группе сравнения были в основном дети с респираторными нарушениями за счет морфофункциональной незрелости легочной ткани и других органов и систем организма недоношенного ребенка или вследствие нетяжелой формы врожденной пневмонии.

Частота осложнений береме	нности и родов	у матерей недон	ошенных дете	Таблица 1 е й
Потоголия	Группа	2		
Патология	основная	сравнения	χ^2	р
ХФПН	19 (46,3)	10 (33,3)	1,42	0,234
Гестоз	14 (34,1)	10 (33,3)	0,05	0,825
Преэклампсия	5 (12,2)	5 (16,7)	0,24	0,622
Гестационный пиелонефрит	7 (17,1)	4 (13,3)	0,185	0,667
Многоводие	9 (22,0)	6 (20,0)	1,91	0,385
Хориоамнионит	6 (14,6)	2 (6,7)	1,01	0,316
Острая респираторная инфекция	12 (29,3)	10 (33,3)	0,13	0,714
Анемия	18 (43,9)	19 (63,3)	2,31	0,128
Угроза прерывания беременности	21 (51,2)	12 (40,0)	0,88	0,349
Отслойка плаценты	14 (34,1)	8 (26,7)	0,55	0,457
Рубец на матке	5 (12,2)	9 (30,0)	3,47	0,063
Зеленые околоплодные воды	3 (7,3)	2 (6,7)	0,02	0,893
Вагинит, кольпит	14 (34,1)	6 (20,0)	1,71	0,191
Не наблюдалась в женской консультации	13 (31,7)	4 (13,3)	3,21	0,073
Кесарево сечение	23 (56,1)	19 (63,3)	0,38	0,54

Характеристика состояния здоровья обследованных (основной диагноз)						
Диагноз	Группа	a, n (%)		_		
	основная	сравнения	χ^2	р		
Внутриамниотическая инфекция	14 (34,1)	1 (3,2)	9,871	0,002		
Сепсис	9 (22,0)	0	7,541	0,006		
РДС новорожденного	9 (22,0)	17 (54,8)	8,995	0,003		
ЗВУР	1 (2,4)	2 (6,5)	0,765	0,382		
Врожденная пневмония	6 (14,6)	8 (25,8)	3,352	0,067		
Недоношенность	2 (4,9)	3 (9,7)	0,104	0,747		
Примечание. ЗВУР – задержка внутриутробного роста и развития.						

При изучении процессов ранней адаптации осложненное течение неонатального периода выявлено у детей обеих групп, однако в основной группе нарушения были более выраженными. Тяжесть состояния пациентов основной группы в 1-е сутки жизни прежде всего была связана с перенесенной внутриутробной гипоксией и асфиксией в родах, внутриутробным инфицированием, гемо- и ликвородина-

Оценка по шк	але АПГАР при рождені	Таблица 3 ии (Me [25; 75])		
Гоуппо	Оценка по Апгар			
Группа	на 1-й минуте	на 5-й минуте		
Основная (n=41)	3 [3; 4]	5 [4; 6]		
Сравнения (n=31)	6 [5; 6]	7 [7; 8]		
р	<0,001	<0,001		

	C	имптом «белого пят	на» у обо	следованных, п (%)		аблица 4
Наличие	1-3-й день жизни			10-14-й день жизни		
симптома ос	основная группа	группа сравнения	р	основная группа	группа сравнения	– р
Нет (<3 с)	25 (61,0)	14 (87,5)		20 (48,8)	16 (100)	
Есть (<5 с)	15 (36,6)	2 (12,5)	>0,05	16 (39,0)	0	<0,05
Есть (>5 с)	1 (2,4)	0		4 (9,8)	0	

Гемодинамические показатели у обследованных (Ме [25; 75])				
	Гру			
Показатель —	основная (n=41)	сравнения (n=31)	— р	
Сатурация крови (SaO ₂), %:				
в 1–3-и сутки ² /	93 [86; 94]	92 [90; 93]	< 0.05	
на 10–14-е сутки	93 [90; 94]	93 [92; 94]	>0,05	
Среднее АД, мм рт. ст.				
в 1–3-и сутки	40 [33; 44]	44 [37: 50]	< 0.05	
на 10–14-е сутки	43 [33; 51]	49 [45; 52]	<0,05	
ЧСС, в минуту:				
в 1–3-и сутки	137 [133; 155]	138 [127; 150]	>0.05	
на 10–14-е сутки	147 [133; 158]	141[136; 150]	>0,05	

нарушениями, мическими что требовало интенсивной терапии в отделении реанимации новорожденных. В группе сравнения среди причин, определяющих степень тяжести состояния детей, превалировали структурнофункциональная незрелость органов и систем, дыхательная недостаточность различного генеза.

При клиническом обследовании у всех детей обеих групп в первые 3 дня жизни присутствовали признаки дезадаптации сердечно-

сосудистой системы: симптом «белого пятна», мраморность кожных покровов бледность кожи, акроцианоз, который усиливался при нагрузке (сосание, крик), глухость сердечных тонов, отечность голеней и стоп (табл. 4). К концу периода ранней неонатальной адаптации симптом «белого пятна», свидетельствующий о степени нарушении микроциркуляции и гиповолемии, в группе сравнения был отрицательным и выявлялся у половины детей основной группы (p<0.05).

Отметим, что инотропная поддержка (дофамином) требовалась 13 (31,7%) детям в основной и 8 (25%) — в группе сравнения (χ^2 =0,08; p>0,05). В динамике к концу периода ранней адаптации (10-14-й день жизни) частота инотропной поддержки в основной группе увеличилась до 59%, при этом в 10,3% случаев (2 ребенка) понадобилось добавить 2-й препарат (добутамин). В группе сравнения необходимость в инотропной поддержке в динамике отсутствовала ($\chi^2=24,6$; р<0,0005). Приглушенность (глухость) сердечных тонов на-

> ходилась в прямой зависимости от степени перенесенной гипоксии (r = +0.881; p < 0.05) и в обратной - от гестационного возраста ребенка (r_s=-0,945; p < 0.05).

Перечисленные патологические симптомы довольно неспецифичные и чаще обусловлены проявлением вегетовисцеральных дисфункций.

Как видно из табл. 5, минимальная сатурация кислородом крови в первые 3 сут жизни у детей основной группы была достоверно ниже, чем в группе сравнения, причем 40 (97,6%) детям с рождения требовалась традиционная ИВЛ, в отличие от недоношенных группы сравнения, которым в 100% случаев проводилась неинвазивная вентиляция методом NCPAP (Nose Continuous Positive Airway Pressure) (p<0,0005). К окончанию периода ранней адаптации 17 (61%) детей из 28 выживших в основной группе оставались на инвазивной ИВЛ, а 11 (39%) нуждались в NCPAP; в группе сравнения с 5-х суток жизни у всех детей поддерживали необходимую сатурацию на периодической традиционной масочной оксигенации.

Установлена достоверная разница в показателях среднего АД у детей исследуемых групп как при рождении, так и в динамике наблюдения (см. табл. 5). К концу периода ранней адаптации установлена прямая корреляционная зависимость уровня АД и слабая обратная зависимость ЧСС от срока гестации (соответственно r_s =+0,462; p<0,05 и r_s =-0,285; p<0,05). По данным стандартной ЭКГ, медиана ЧСС в исследуемых группах не различалась при рождении и в динамике наблюдения и не выходила за пределы верхней границы нормального распределения для новорожденных первых 3-х дней жизни [20]. Однако при оценке данного показателя необходимо учитывать наличие инотропной подлержки у млаленца.

Среди недоношенных основной группы по сравнению с группой сравнения отмечались выраженные достоверные изменения амплитуды ST-T (в отведениях I, II, AVF) и длительности интервала Q-T (табл. 6). По мнению зарубежных ученых, зубец T и сегмент S-T в раннем неонатальном периоде крайне вариабельны [20]. Тем не менее выявленные ST-T-изменения могут быть обусловлены воздействием на миокард перинатальной гипоксии, электролитными, метаболическими, вегетативными нарушениями и особенностями кровоснабжения сердца у новорожденных [8, 18]. Установлена слабая положительная корреляция зубца P, интервала Q-T, сегмента S-T (во II отведении) с массой тела и гестационным возрастом ребенка (соответственно r_s =+0,444 и +0,351; r_s =+0,407 и +0,39; r_s =+0,272 и +0,351; p<0,05).

При УЗИ сердца проводилась морфометрия, позволяющая в комплексе оценивать морфофункциональное состояние ССС недоношенных (табл. 7).

При сравнении данных ЭхоКГ выявлено, что такой показатель функции ЛЖ, как ФВ, в основной группе был достоверно выше, чем в группе сравнения, однако к концу периода ранней адаптации разница исчезала (см. табл. 7). В первые дни жизни ФВ имела тенденцию к уменьшению при увеличении срока гестации (r = -0.495; p<0,01). Диаметры всех отделов сердца (КДР, КСР, ПЖ, ТЗСЛЖ) и АО у недоношенных детей, нуждающихся в интенсивной терапии (основная группа), в 1-е сутки жизни были достоверно ниже, чем у младенцев группы сравнения (р<0,01). КДР и КСР увеличивались с увеличением срока гестации (соответственно r_s =+0,579; p<0,01; r_s =+0,609; p<0,05). УО сердца был достоверно ниже у детей основной группы в течение всего периода ранней неонатальной адаптации и находился в прямой зависимости от гестационного возраста ребенка (r = +0,424; p < 0.01).

По данным УЗИ сердца в 2-мерном режиме, ООО обнаруживалось у 100% детей обеих групп. Размеры (диаметр) ООО у обследованных достоверно не отличались и в динамике наблюдения незначительно сокращались. Корреляционный анализ выявил достоверную отрицательную связь размера ООО с гестационным возрастом (r_s =-0,365; p<0,05). У всех недоношенных детей обеих групп при допплерографии сердца в цветном режиме выявлено межпредсердное шунтирование крови. Регургитация во время систолы предсердий имела левоправое, а во время диастолы — праволевое направление, усиливаясь при нагрузке (плач младенца, кормление). ООО для детей в критическом состоянии было

Организаторы:

- Министерство здравоохранения Российской Федерации
- ФГБУ «Научный центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России
- Российское общество акушеров-гинекологов
- Лига акушерок России
- Конгресс-оператор ООО «МЕДИ Экспо»

В РАМКАХ ФОРУМА:

УЛЬТРАЗВУКОВАЯ И ЛУЧЕВАЯ ДИАГНОСТИКА В АКУШЕРСТВЕ, ГИНЕКОЛОГИИ И НЕОНАТОЛОГИИ

Всероссийский научно-образовательный конгресс

НЕВЫНАШИВАНИЕ БЕРЕМЕННОСТИ: СОЦИАЛЬНАЯ ПРОБЛЕМА, МЕДИЦИНСКИЕ РЕШЕНИЯVI Научно-практическая конференция

ОХРАНА ЗДОРОВЬЯ МАТЕРИ И РЕБЕНКА — 2016

XVIII Международная специализированная выставка оборудования, лекарственных препаратов по акушерству, гинекологии и неонатологии

+ **ПРЕКУРСЫ** (Подробнее на сайтах: www.mother-child.ru, www.mediexpo.ru)

Заявки на доклады принимаются до 1 июля

тел.: +7 (495) 721-88-66 | e-mail: expo@mediexpo.ru

гемодинамически более значимо, о чем свидетельствовали признаки обеднения системного кровотока. Так, показатели КДР и КСР у них были достоверно меньше, чем в группе сравнения (см. табл. 7).

Открытый артериальный проток (ОАП) был выявлен при рождении у 14 (34%) детей основной группы и 5 (14%) — группы сравнения (р>0,05). Размеры ОАП находились в обратной корреляции с сроком гестации ребенка (r=-0,277; p<0,05).

У всех детей основной группы с выявленным ОАП он был гемодинамически значимым с шунтированием крови (в спокойном состоянии) во время систолы желудочков в левоправом направлении.

Основными критериями гемодинамической значимости ОАП были: диаметр АП >1,5 мм у новорожденных массой тела <1500 г или >1.4 мм/кг при массе тела ≥1500 г; наличие левоправого шунтирования крови по протоку; наличие ретроградного кровотока в постдуктальной аорте, составляющего ≥50% антеградного кровотока [21]. Учитывали дополнительный критерий гемодинамической значимости ОАП, рекомендованный РАСПМ: отношение размера левого предсердия к корню аорты (LA/Ao) ≥1,4. ОАП считался гемодинамически значимым при наличии всех основных и дополнительного критерия [21].

В первые 2 сут жизни гемодинамически значимый ОАП не имел специфических проявлений. В последующие дни у пациентов с тяжелой перинатальной патологией отмечались неустойчивые показатели сатурации крови (SaO₂) за счет изменения направления шунтирования крови по АП, развитие метаболического ацидоза. усиленный сердечный толчок, систолический (57,1% - 8 пациентов) или систолодиастолический (35,7% - 5 младенцев) шум во втором-третьем межреберье слева от грудины, однако все эти клинические симптомы неспецифичны. Так, у 1 (7,1%) ребенка с ОАП из основной группы не было шума. Появление на ЭхоКГ с допплеровскимисследованием признаков гемодинамической значимости ОАП у недоношенных опережали клинические проявления, а ЭКГ была малоинформативным методом в диагностике. Клинические последствия функциониро-

Показатели	ЭКГ у обследованных	(Me [25; 75])	Таблица 6
Пашааааа	Гру		
Показатель	основная	сравнения	р
Минимальное <i>R-R</i> , мм	18 [17; 19,5]	18 [17; 21]	>0,05
Максимальное <i>R-R</i> , мм	19 [18; 21]	20 [18; 22]	>0,05
эос, °	109 [102; 120]	106 [99; 120]	>0,05
P, длительность в II отведении, мм	2 [2; 2]	2 [2; 3]	<0,05
<i>P-Q</i> , длительность в II отведении, мм	5 [5; 5]	4 [5; 5]	>0,05
<i>QRS</i> , длительность в II отведении, мм	1 [1; 2]	1 [1; 1,5]	>0,05
<i>Q-T</i> , длительность в II отведении, мм	3 [3; 5]	7 [3; 8]	<0,05
<i>R</i> -амплитуда, мм I отведение II отведение AVF	3 [1,5; 3] 6 [4; 9] 6 [4; 9]	3 [2; 5] 7 [5; 8] 8 [6; 12]	>0,05 >0,05 <0,05
<i>Р</i> -амплитуда, мм I отведение II отведение III отведение	1 [0,5; 1] 2 [1,5; 2] 1 [1; 1]	1 [1; 1] 2 [1,5; 2] 1 [1; 2]	>0,05 >0,05 >0,05
<i>Q</i> -амплитуда, мм III отведение	1 [1; 3]	2 [1; 3]	>0,05
T-амплитуда, мм II отведение AVF	0,5 [0,5; 0,5] 0	2 1 [1; 1]	<0,05 <0,05
Сегмент <i>S-T</i> амплитуда, мм I отведение II отведение III отведение	0 0 0	1 [0; 6] 3 [1; 7] 0	< 0,05 < 0,05 >0,05

	Показат	ели ЭхоКГ у обс	ледованны	ых (Me [25; 75])	Т	аблица 7
	Группа			Группа		
Показатель	основная	сравнения	р	основная	сравнения	р
	1-3-й день			10-14-й день		
КДР, мм	14,2 [13; 15,5]	16,0 [15; 18]	<0,05	15 [13; 16]	17 [15; 18]	<0,05
КСР, мм	9,5 [8; 10]	10,8 [10; 12]	<0,05	10 [8,6; 11]	11,5 [10; 12]	<0,05
ОАП, мм	2,0 [0; 2,5]	0 [0;1,8]	<0,05	0 [0; 2]	0 [0; 0]	<0,05
000, мм	2,5 [2; 3]	2,5 [2; 3]	>0,05	2 [1,9; 3]	2 [1,9; 2,8]	>0,05
ФВ, %	68,0 [65; 71]	65,0 [60; 67]	<0,05	68 [65; 70]	69 [60; 67]	>0,05
ФУ, мл	34,0 [33; 37]	33,0 [32; 35]	>0,05	35 [33; 37]	37 [35; 37]	>0,05
ПЖ, мм	7,3 [6,6; 8,5]	8,5 [7; 10]	<0,05	8 [6; 8,5]	8,5 [8; 10]	>0,05
ТЗСЛЖ, мм	2,3 [2; 2,5]	2,8 [2,5; 3]	<0,05	3 [2,5; 3]	3 [3; 3]	<0,05
АО, мм	8,0 [7; 9]	9,0 [8; 9,5]	<0,05	8,3 [7; 9,3]	10 [10; 11]	<0,05
ЛА, мм	6,0 [5; 7]	6,5 [6; 17]	>0,05	6 [5; 7]	6,5 [6; 7]	>0,05
УО, мл	3,5 [2,9; 4,4]	4,6 [4,1; 6]	<0,05	3,9 [2,5; 4,9]	6 [5; 7]	<0,05
СДПЖ, мм рт. ст.	30,0 [28; 34]	28 [26; 30]	>0,05	29 [24; 35]	25 [24; 30]	>0,05

вания ОАП зависят от выраженности левоправого шунтирования крови и способности организма новорожденного компенсировать гемодинамические нарушения. К компенсаторным механизмам относятся: способность увеличивать СВ за счет силы сокращений и (или) ЧСС; способность перераспределять пониженный кровоток в большом круге кровообращения за счет периферических сосудов [21].

В 100% случаев функционирующий ОАП в основной группе пациентов сочетался с ООО при рождении, а к концу периода ранней адаптации (к 14-му дню) он сохранялся у 8 (28,6%) детей из 28 выживших в основной группе (в группе сравнения в 100% случаев он закрылся). У 6 (46,2%) из 13 младенцев основной группы, погибших в первые 2 нед жизни, отмечали легочную гипертензию (повышение систолического давления в ЛА > 37—50 мм рт. ст.), снижающую вероятность экстубации. У данных детей с перинатальной инфекцией в связи с развитием синдрома обкрадывания мезентериального, почечного и церебрального кровотока отмечалось ухудшение состояния за счет развития некротизирующего энтероколита, тяжелой ишемии головного мозга, острого почечного повреждения с развитием полиорганной недостаточности.

Таким образом, у недоношенных новорожденных с различной перинатальной патологией период ранней неонатальной физиологической адаптации, в том числе ССС, завершается к 14 сут жизни. Функциональные особенности состояния ССС можно расценить как транзиторную функциональную недостаточность кровообращения. Морфометрические особенности сердца в данном случае играют компенсаторную роль. Установлена четкая взаимосвязь характера кардиоваскулярных изменений с тяжестью перинатальной патологии и гестационным возрастом. С уменьшением гестационного возраста увеличивается частота формирования синдрома дезадаптации ССС с дисфункцией миокарда.

Литература

- 1. Неонатология. Национальное руководство. Под ред. Н.Н. Володина / М.: ГЭОТАР-Медиа, 2007; 848 с.
- 2. Интенсивная терапия и принципы выхаживания детей с экстремально низкой и очень низкой массой тела при рождении. Методическое письмо. Под ред. Е.Н. Байбариной, Д.Н. Дегтярева / М., 2011; 72 с.
- 3. Михалев Е.В., Желев В.А., Барановская С.В. Характеристика сердечнососудистой системы у недоношенных, перенесших перинатальную гипоксию // Сибирский медицинский журнал. – 2007; 4: 149.
- 4. Вернигора С.Е., Кочетова Г.Ю., Зарубина И.В. Мониторинг сердечнососудистых заболеваний новорожденных. Материалы IV Ежегодного конгресса специалистов перинатальной медицины / М., 2009; 101.
- 5. Долгова З.Р. Особенности перинатального анамнеза и вариабельности сердечного ритма у недоношенных детей первого года жизни, рожденных с экстремально низкой массой тела и очень низкой массой тела // Вестник современной клинической медицины. 2014; 7 (6): 20–6.
- 6. Гнусаев С.Ф., Шибаев А.Н., Федерякина О.Б. Сердечно-сосудистые нарушения у новорожденных, перенесших перинатальную гипоксию // Педиатрия. 2006; 1: 9–14.

- 7. Харенко И.В., Волосников Д.К. Оценка диастолической функции миокарда у новорожденных с перинатальной патологией // Педиатрия. – 2006; 1: 14–7.
- 8. Прахов А.В. Неонатальная кардиология / Н. Новгород: НГИА, 2008: 388 с.
- 9. Краева О.А., Ковтун О.П., Ковалев В.В. и др. Некоторые аспекты формирования функциональных нарушений сердца у новорожденных детей // Вестник уральской медицинской науки. 2009; 4 (27): 33—6.
- 10. Олендарь Н.В. Адаптивные реакции сердечно-сосудистой системы у недоношенных новорожденных детей с очень низкой массой тела при рождении // Вопросы практической педиатрии. 2009; 4 (2): 111—2.
- 11. Тараканова Т.С., Козырева Т.Б. ЭКГ-параметры и состояние гемодинамики у недоношенных детей различным сроком гестации // Фундаментальные исследования. 2012; 8 (2): 435–9.
- 12. Aggarwal R., Bajpai A., Deorari A. et al. Patent ductus arteriosus in preterm neonates // Indian J. Pediatr. 2001; 68 (10): 981–4.
- 13. Пыков М.И., Ефимов М.С., Вокуева Т.И. Влияние гемодинамически значимого открытого артериального протока на показатели центральной гемодинамики и органного кровотока у недоношенных новорожденных // Ультразвуковая и функциональная диагностика. 2008; 3: 26—33.
- 14. Виноградова И.В., Краснов М.В., Иванова Н.Н. Особенности состояния сердечно-сосудистой системы у новорожденных с экстремально низкой массой тела // Медицинский альманах. 2009; 4: 103—6.
- 15. Крючко Д.С., Байбарина Е.Н., Антонов А.Г. и др. Открытый артериальный проток у недоношенных новорожденных // Вопросы практической педиатрии. 2010; 5 (2): 57–65.
- 16. Панов П., Панова Л., Ахмадеева Э. Дифференцированные подходы к профилактике бронхолегочной дисплазии с учетом HLA-фенотипа и перинатального анамнеза // Врач. 2014; 9: 39—43.
- 17. Лутфуллин И.Я., Сафина А.И., Садыкова З.Р. Вклад дефицита массы тела при рождении в формирование риска последующей кардиоваскулярной патологии // Вестник современной клинической медицины. 2013; 6 (1): 53—8
- 18. Тумаева Т.С., Герасименко А.В., Пиксайкина О.А. и др. Особенности функционирования сердечно-сосудистой системы у недоношенных детей различных сроков гестации и возможности их выявления в раннем адаптационном периоде // Практическая медицина. 2012; 12: 56—64.
- 19. Ciccone M., Scicchitano P., Zito A. et al. Different functional cardiac characteristics observed in preterm neonates by echocardiography and tissue doppler imaging // Early Human Development. 2011; 87 (8): 555–8.
- 20. Schwartz P., Garson A., Paul T. et al. Guidelines for the interpretation of the neonatal electrocardiogram // Eur. Heart J. 2002; 23: 1329–44.
- 21. Протокол ведения недоношенных детей с гемодинамически значимым функционирующим артериальным протоком): методические рекомендации РАСПМ. Под ред. Н.Н. Володина, Е.Н. Байбариной / М., 2010; 34 с.

CARDIOVASCULAR CHANGES IN PRETERM INFANTS WITH PERINATAL PATHOLOGY

E. Yarukova; Professor **L. Panova**, MD Bashkir State Medical University, Ufa

The study of the functional state of the cardiovascular system in the neonatal period in infants, born prematurely, it found that there is a relationship of cardiovascular nature changes with perinatal pathology and gestational age. With decreasing gestational age increases the frequency of formation of maladjustment syndrome, cardiovascular system with myocardial dysfunction.

Key words: cardiology, cardiovascular system, morphofunctional state, premature infants, maladjustment.

8'2016 **BPAY** 63